浙江飞鱼近200期走势图|浙江飞鱼开奖结果

高一數學學習方法總結 高中數學學習方法

高一數學學習方法總結 高中數學學習方法 時間:2017-06-17

  沒有良好的學習方法,高一數學學習就會猶如大海行舟,缺乏方向與航線,下面是學識網小編給大家帶來的高一數學學習方法總結,希望對你有幫助。

  高中數學特點

  1、 理論加強

  2、 課程增多

  3、 難度增大

  4、 要求提高

  高中數學思想

  高中數學從學習方法和思想方法上更接近于高等數學。學好它,需要我們從方法論的高度來掌握它。我們在研究數學問題時要經常運用唯物辯證的思想去解決數學問題。數學思想,實質上就是唯物辯證法在數學中的運用的反映。中學數學學習要重點掌握的的數學思想有以上幾個:集合與對應思想,初步公理化思想,數形結合思想,運動思想,轉化思想,變換思想。

  例如,數列、一次函數、解析幾何中的直線幾個概念都可以用函數(特殊的對應)的概念來統一。又比如,數、方程、不等式、數列幾個概念也都可以統一到函數概念。

  再看看下面這個運用“矛盾”的觀點來解題的例子。

  已知動點Q在圓x2+y2=1上移動,定點P(2,0),求線段PQ中點的軌跡。

  分析此題,圖中P、Q、M三點是互相制約的,而Q點的運動將帶動M點的運動;主要矛盾是點Q的運動,而點Q的運動軌跡遵循方程x02+y02=1;次要矛盾關系:M是線段PQ的中點,可以用中點公式將M的坐標(x,y)用點Q的坐標表示出來。

  x=(x0+2)/2

  y=y0/2

  顯然,用代入的方法,消去題中的x0、y0就可以求得所求軌跡。

  數學思想方法與解題技巧是不同的,在證明或求解中,運用歸納、演繹、換元等方法解題問題可以說是解題的技術性問題,而數學思想是解題時帶有指導性的普遍思想方法。在解一道題時,從整體考慮,應如何著手,有什么途徑?就是在數學思想方法的指導下的普遍性問題。

  有了數學思想以后,還要掌握具體的方法,比如:換元、待定系數、數學歸納法、分析法、綜合法、反證法等等。只有在解題思想的指導下,靈活地運用具體的解題方法才能真正地學好數學,僅僅掌握具體的操作方法,而沒有從解題思想的角度考慮問題,往往難于使數學學習進入更高的層次,會為今后進入大學深造帶來很有麻煩。

  在具體的方法中,常用的有:觀察與實驗,聯想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

  要打贏一場戰役,不可能只是勇猛沖殺、一不怕死二不怕苦就可以打贏的,必須制訂好事關全局的戰術和策略問題。解數學題時,也要注意解題思維策略問題,經常要思考:選擇什么角度來進入,應遵循什么原則性的東西。一般地,在解題中所采取的總體思路,是帶有原則性的思想方法,是一種宏觀的指導,一般性的解決方案。

  中學數學中經常用到的數學思維策略有:以簡馭繁、數形結全、進退互用、化生為熟、正難則反、倒順相還、動靜轉換、分合相輔。

  如果有了正確的數學思想方法,采取了恰當的數學思維策略,又有了豐富的經驗和扎實的基本功,一定可以學好高中數學。


本文地址:http://www.vffyo.tw/xuexifangfa/gaoyishuxue/1437665.htm
以上內容來自互聯網,請自行判斷內容的正確性。若本站收錄的信息無意侵犯了貴司版權,請給我們來信([email protected]),我們會及時處理和回復,謝謝.
0

很好,很強大!

0%
0

太差勁了!

0%
X

分享到微信朋友圈

打開微信,使用“掃一掃”即可將網頁分享至朋友圈。

浙江飞鱼近200期走势图 千炮捕鱼天喵侠 博远棋牌 万人棋牌官方网站 炸金花规则图解 重庆时时彩-安卓版 白沙娱乐场 重庆时时官网投注 重庆快乐十分每天开多少期 那些软件看小视频可以赚钱吗 广东时时11选5开奖结果走势图